50 research outputs found

    Neuropsychological profiles and behavioral ratings in ADHD overlap only in the dimension of syndrome severity

    Get PDF
    Objectives. The aim of this study was to compare the cognitive neuropsychological and the behavioral rating profiles of attention deficit/hyperactivity disorder (ADHD). Methods. Forty-two children diagnosed with ADHD (M=11.5  years, SD=1.1) and 43 typically developing children (M=11.2 years, SD=1.7) participated. We measured symptom severity with behavioral rating scales, and we administered neuropsychological tasks to measure inhibitory performance, updating/working memory, and shifting ability. Results. On the basis of the three neuropsychological variables, the hierarchical cluster analytic method yielded a six-cluster structure. The clusters, according to the severity of the impairment, were labeled as follows: none or few symptoms, Moderate inhibition and mild shifting, moderate to severe shifting with moderate updating, moderate updating, severe updating with mild shifting, and severe updating with severe shifting. There were no systematic differences in inattention and hyperactive-impulsive behavior across the clusters. The comorbid learning disorder appeared more likely only in severe neuropsychological forms of ADHD. Conclusion. In sum, our results suggest that behavioral ratings and neuropsychological profiles converge only in the dimension of symptom severity and that atypicalities in executive functions may manifest in nonspecific everyday problems

    Baseline Characteristics and Disease Phenotype In Inflammatory Bowel Disease Results of A Paediatric IBD Cohort.

    Get PDF
    BACKGROUND AND AIMS Predicting short-term relapses and long-term prognosis is of outmost importance in paediatric inflammatory bowel disease. Our aim was to investigate the short-term disease outcome and medication during the first year in a paediatric incident cohort from Hungary. In addition, association laboratory markers and disease activity indices with short-term disease outcome and medication were analysed. METHODS From January 1, 2008 to December 31, 2010 demographic data and clinical characteristics of newly diagnosed paediatric inflammatory bowel disease patients younger than 18 years of age were prospectively recorded. RESULTS A total of 420 patients were identified [Crohn's disease: 266; ulcerative colitis 124]. Initially, 48% (124/256) of Crohn's disease patients had moderate to severe disease (PCDAI>31), and this rate decreased to 2.1% at one-year follow-up. Proportion of ulcerative colitis patients with moderate to severe disease (PUCAI>35) at diagnosis declined from 57.5% (69/120) to 6.8% at one-year follow-up. Terminal ileal involvement correlated with higher initial CRP (p = 0.021) and initial PCDAI (p = 0.026). In ulcerative colitis, elevated CRP (p = 0.002) was associated with disease extension. CRP and PCDAI at diagnosis were associated with the need for immunomodulators at one year in children with Crohn's disease. Initial CRP was also associated with the need for immunomodulators in patients with ulcerative colitis at one-year follow-up. CONCLUSIONS At diagnosis half of the patients with inflammatory bowel disease had moderate to severe disease and this rate decreased to less than 10% after one year. Initial CRP and PCDAI were related to the need for aggressive therapy in Crohn's disease

    The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms

    Get PDF
    Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging

    Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    Get PDF
    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)

    Get PDF
    These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion

    Phenotype Reports: A new Manuscript Type

    No full text
    Contains fulltext : 206792.pdf (publisher's version ) (Closed access
    corecore